Inverse Matrix (Theorems)








Theorem I : The inverse of a square matrix, if it exists, is unique.
Proof : Let  be a square matrix of order  such that inverse of  exists.
Let  and  be any two inverse of  A .


  Any two inverse of  are equal matrices.
  The inverse of  is unique.

Theorem II : A square matrix is invertible if and only if it is non-singular.
Proof : Let the square matrix  be invertible.
  There exists a square matrix  such that  AB = BA = I  .

  The number  |A| is non-zero, for otherwise   |A|.|B|  will become zero.
  The matrix  is non-singular.

Theorem III : If  and  are invertible matrices of order  , then show that  AB  is also
invertible and    .
Proof :  The matrices  and  are invertible.
    exists and  
and  are square matrices of order  , therefore  AB  is defined .
Also      because  and  are invertible and so  
  AB  is invertible, i.e.,     exists.
Now                 
and                 
 
 

Comments