Types of Matrices














#Types of Matrices or Matrix:

   Row Matrix
   A matrix is said to be a row matrix if it has only one row, but may have any number of 
   columns,

   e.g :                
                The order of a row matrix is   " 1 x n ".

   Column Matrix
    A matrix is said to be a Column matrix if it has only one column, but may have any 
    number of rows,
    e.g :

                                                   
                     The order of a column matrix is   " m x 1 ". 

   Square Martrix
   A matrix is said to be a Square matrix if number of rows is equal to the number of 
   column,

   e.g : the matrix        having 3 rows and 3 columns is a square matrix.
           The order of a square matrix is " n x n " .

Note : In any given matrix     of order " m x n ", the elements of the principal
              diagonal are     .

   Rectangular Matrix
   A matrix is said to be a rectangular matrix if the number of rows is not equal to the 
   number of column,
  
   e.g : the matrix     having 3 rows and 4 columns is a rectangular matrix.
            It may be noted that a row matrix of order " 1 x n " (n ≠ 1 ) and a column matrix
            of order " m x 1 " ( m ≠ 1 ) are rectangular matrix.

   Zero or Null Matrix
   A matrix each of whose element is zero is called a zero or null matrix.
   e.g : each of the matrix
            
                    
          is a zero matrix. Zero matrix is denoted by " O ".

   Diagonal Matrix
   A square matrix is said to be a diagonal matrix, if all elements other than those occuring
   in the principal diagonal are zero, i.e., if    is a square matrix of order " m x n ",
   then it is said to be a diagonal matrix if    for all   .

   e.g :                       are diagonal matrix.
Note : A diagonal matrix    is also written as  .

   Scalar Matrix
   A diagonal matrix is said to be a Scalar matrix if all the elements in its principal diagonal
   are equal to some non-zero constant, say
   e.g : the matrix      is a scalar matrix .
Note : A Square zero matrix is not a scalar matrix.

   Unit or Identity Matrix
   A scalar matrix is said to be a unit or identity matrix if all of its elements in the principal
   diagonal are unity. It is denoted by  , if it is of order "n" .
   e.g : the matrix      is a Unit matrix of order 3.
Note : A square matrix   is a unit matrix if   

   Equal Matrix
   Two matrix are said to be equal if they are of the same order and if their corresponding 
    elements are equal.

    If A is a matrix of order " m x n " and B is a matrix of order " p x r ", then A = B if
    (1)  m = p ; n = r ;      and
    (2)    for all  3 x 2     and   j = 1 , 2 , 3 ,........, n

    Two matrix X and Y given below are not equal, since they are of different orders, namely
     2 x 3 and 3 x 2 respectively.

                                            
    Also, the two matrix P and Q are not equal, since some elements of P are not equal to the
    corresponding elements of Q.
     
                                          

Comments