Types of Function ?








There are five types of function :
(1) One-to-One function or One-One function or Injective function
(2) Many-to-One function or Many-One function
(3) Onto function or Surjective function
(4) Into function
(5) Bijective function

One-to-One function or One-one function
A function    is said to be one-to-one function, if image of distinct elements of  X
are distinct under  f . In other words, functions for which each element of the  set X   is
mapped to a different element of the  set Y   are said to be one-to-one function     
                                   
                                                        The domain is  { A , B , C }
                                                       The co-domain is { 1 , 2 , 3 , 4 }
                                                       The range is { 1 , 2  , 3 }

Many-to-one function or Many-one function
A function    is said to be many-to-one function, if more than one elements of  X
are mapped to the same element of  Y .  In other words, a function can map more than one
element of the  set X  to the same element of the  set Y  .  Such a type of function is said to be
many-to-one function.      
                                         
                                                          The domain is  { A , B , C }
                                                         The co-domain is { 1 , 2 , 3 , 4 }
                                                         The range is { 1 , 4 }

Onto function or Surjective function
A function    is said to be Onto function, if every element of the  set Y  is the 
image of at least one element of   set X   i.e, if their is no unpaired element in the  set Y  then
we say that  function  f  maps the  set X  onto  set Y Such a function is known as
Onto function.        
                                                
                                                         The domain is { a , b , c , d }
                                                           The co-domain is { 1 , 2 , 3 }
                                                           The range is { 1 , 2 , 3 }
Note:  In Onto function   Co-domain = range  and  range Co-domain.

Into function
A function    is said to be Into function, if their is unpaired element in the  set Y
then we say that  function  f  maps the  set X  Into  set Y . Such a function is known as
Into function.  
                                              
                                                         The domain is { a , b , c }
                                                           The co-domain is { 1 , 2 , 3 , 4 }
                                                           The range is { 1 , 3 , 4 }
Note:  In Into function   range  Co-domain.

Bijective Function
A function which is both One-one function and Onto function  is said to be a Bijective
function.
                                         
                                                           The domain is { a , b , c }
                                                           The co-domain is { 1 , 2 }
                                                           The range is { 1 , 2 } 

Comments