Operation on Sets by Using Venn Diagram [ Part-2 ]














# Union of Sets
    The Union of two sets and is the set which consists of all those elements which are
     either in or in ( including those which are in both ). In symbols, we write  :
     ∪ B = { x : x ∈ or ∈ B } 
    The union of two sets can be represented by a Venn Diagram as shown below :
   Some Properties of the Operation of UNION :
   (i)  B = B  A  ( Commutative law )
   (ii) ( B )  C = A  ( B  C )     ( Associative law )
   (iii)  𝜱 = A   ( Law of Identity element, 𝜱 is the identity of U )
   (iv) ∪ A = A   ( Idempotent law )
   (v)  ∪ A = U   ( Law of U )

# Intersection of Sets
    The intersection of two sets and B is the set of all those elements which belongs to both
    and B. Symbolically, we write :
     B = { x : x ∈ or ∈ B } 
   The intersection of two sets can be represented by a Venn Diagram as shown below :
    The Shaded portion in the above figure indicates the intersection of and B.
   Some Properties of the Operation of INTERSECTION :
   (i)  B = B  A  ( Commutative law )
   (ii) (  B )  C = A  ( B  C )     ( Associative law )
   (iii) 𝜱  A = 𝜱 ,  U  A = A             ( Law of 𝜱 and U )
   (iv)  A = A                                    ( Idempotent law )
   (v)   (  ) = ( A  B )  ( A  C )      ( Distributive law )

# Difference of Sets
    The difference of the sets and in this order is the set of elements which belongs to 
    but not to . Symbolically, we write :
     A - B   and read as " minus B " .
    The Difference of two sets can be represented by a Venn Diagram as shown below :
   The Shaded portion in the above figure indicates the Difference of and B.

Comments